Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 102, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409522

RESUMO

The protease ADAM17 plays an important role in inflammation and cancer and is regulated by iRhom2. Mutations in the cytosolic N-terminus of human iRhom2 cause tylosis with oesophageal cancer (TOC). In mice, partial deletion of the N-terminus results in a curly hair phenotype (cub). These pathological consequences are consistent with our findings that iRhom2 is highly expressed in keratinocytes and in oesophageal cancer. Cub and TOC are associated with hyperactivation of ADAM17-dependent EGFR signalling. However, the underlying molecular mechanisms are not understood. We have identified a non-canonical, phosphorylation-independent 14-3-3 interaction site that encompasses all known TOC mutations. Disruption of this site dysregulates ADAM17 activity. The larger cub deletion also includes the TOC site and thus also dysregulated ADAM17 activity. The cub deletion, but not the TOC mutation, also causes severe reductions in stimulated shedding, binding, and stability of ADAM17, demonstrating the presence of additional regulatory sites in the N-terminus of iRhom2. Overall, this study contrasts the TOC and cub mutations, illustrates their different molecular consequences, and reveals important key functions of the iRhom2 N-terminus in regulating ADAM17.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Ceratodermia Palmar e Plantar , Humanos , Camundongos , Animais , Fosforilação , Proteínas de Transporte/metabolismo , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Transdução de Sinais/genética , Mutação , Neoplasias Esofágicas/genética
2.
Chem Soc Rev ; 53(3): 1552-1591, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38168798

RESUMO

Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.

3.
Nat Commun ; 14(1): 5842, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730706

RESUMO

Renewable energy-based electrocatalytic oxidation of organic nucleophiles (e.g.methanol, urea, and amine) are more thermodynamically favourable and, economically attractive to replace conventional pure water electrooxidation in electrolyser to produce hydrogen. However, it is challenging due to the competitive oxygen evolution reaction under a high current density (e.g., >300 mA cm-2), which reduces the anode electrocatalyst's activity and stability. Herein, taking lower energy cost urea electrooxidation reaction as the model reaction, we developed oxyanion-engineered Nickel catalysts to inhibit competing oxygen evolution reaction during urea oxidation reaction, achieving an ultrahigh 323.4 mA cm-2 current density at 1.65 V with 99.3 ± 0.4% selectivity of N-products. In situ spectra studies reveal that such in situ generated oxyanions not only inhibit OH- adsorption and guarantee high coverage of urea reactant on active sites to avoid oxygen evolution reaction, but also accelerate urea's C - N bond cleavage to form CNO - intermediates for facilitating urea oxidation reaction. Accordingly, a comprehensive mechanism for competitive adsorption behaviour between OH- and urea to boost urea electrooxidation and dynamic change of Ni active sites during urea oxidation reaction was proposed. This work presents a feasible route for high-efficiency urea electrooxidation reaction and even various electrooxidation reactions in practical applications.

4.
J Exp Med ; 220(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37549024

RESUMO

The neuro-immune regulation is associated with homeostasis of the intestine. Intestinal group 3 innate lymphoid cells (ILC3s) are tissue-resident lymphocytes whose functions are affected by the intestine niche. However, how a gut neuronal signal coordinates the immune response of ILC3s is largely unknown. Here, we found that cyclic adenosine monophosphate (cAMP) signaling exacerbated the inflammatory response and attenuated the expression level of the transcription factor forkhead box O1 (FOXO1) in ILC3s. Deficiency of FOXO1 drove the hyperactivation of ILC3s and resulted in gut inflammation independently of T cells. Mechanistically, FOXO1 promoted the transcription of neuropeptide receptor VIPR2 and inhibited the transcription of adrenoceptor ADRA2A in ILC3s. FOXO1-related regulation of VIPR2 and ADRA2A signaling balanced the activation of ILC3s under steady condition or during colitis. Moreover, chronic stress elevated cAMP level and downregulated FOXO1 level, exacerbating intestinal inflammation. Our findings reveal that FOXO1 balances the activation of ILC3s via VIP and adrenergic signaling and regulates intestinal homeostasis.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Transdução de Sinais , Inflamação/metabolismo , Homeostase , Proteína Forkhead Box O1/metabolismo
5.
Hortic Res ; 10(6): uhad073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303613

RESUMO

An ancient hexaploidization event in the most but not all Asteraceae plants, may have been responsible for shaping the genomes of many horticultural, ornamental, and medicinal plants that promoting the prosperity of the largest angiosperm family on the earth. However, the duplication process of this hexaploidy, as well as the genomic and phenotypic diversity of extant Asteraceae plants caused by paleogenome reorganization, are still poorly understood. We analyzed 11 genomes from 10 genera in Asteraceae, and redated the Asteraceae common hexaploidization (ACH) event ~70.7-78.6 million years ago (Mya) and the Asteroideae specific tetraploidization (AST) event ~41.6-46.2 Mya. Moreover, we identified the genomic homologies generated from the ACH, AST and speciation events, and constructed a multiple genome alignment framework for Asteraceae. Subsequently, we revealed biased fractionations between the paleopolyploidization produced subgenomes, suggesting the ACH and AST both are allopolyplodization events. Interestingly, the paleochromosome reshuffling traces provided clear evidence for the two-step duplications of ACH event in Asteraceae. Furthermore, we reconstructed ancestral Asteraceae karyotype (AAK) that has 9 paleochromosomes, and revealed a highly flexible reshuffling of Asteraceae paleogenome. Of specific significance, we explored the genetic diversity of Heat Shock Transcription Factors (Hsfs) associated with recursive whole-genome polyploidizations, gene duplications, and paleogenome reshuffling, and revealed that the expansion of Hsfs gene families enable heat shock plasticity during the genome evolution of Asteraceae. Our study provides insights on polyploidy and paleogenome remodeling for the successful establishment of Asteraceae, and is helpful for further communication and exploration of the diversification of plant families and phenotypes.

6.
Cell Host Microbe ; 31(3): 418-432.e8, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36893736

RESUMO

The intestinal microbiota plays an important role in colorectal cancer (CRC) progression. However, the effect of tissue-resident commensal bacteria on CRC immune surveillance remains poorly understood. Here, we analyzed the intratissue bacteria from CRC patient colon tissues. We found that the commensal bacteria belonging to the Lachnospiraceae family, including Ruminococcus gnavus (Rg), Blautia producta (Bp), and Dorea formicigenerans (Df), were enriched in normal tissues, while Fusobacterium nucleatum (Fn) and Peptostreptococcus anaerobius (Pa) were abundant in tumor tissues. Tissue-resident Rg and Bp reduced colon tumor growth and promoted the activation of CD8+ T cells in immunocompetent mice. Mechanistically, intratissue Rg and Bp degraded lyso-glycerophospholipids that inhibited CD8+ T cell activity and maintained the immune surveillance function of CD8+ T cells. Lyso-glycerophospholipids alone promoted tumor growth that was abrogated with Rg and Bp injection. Collectively, intratissue Lachnospiraceae family bacteria facilitate the immune surveillance function of CD8+ T cells and control colorectal cancer progression.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Animais , Camundongos , Neoplasias Colorretais/microbiologia , Linfócitos T CD8-Positivos , Carcinogênese , Neoplasias do Colo/microbiologia , Fusobacterium nucleatum
7.
Bioresour Technol ; 365: 128163, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36283665

RESUMO

To alleviate membrane fouling, a membrane of the membrane bioreactor was directly used as the anode of the bio-electrochemical system. On the 14th day, the control group had blocked, while the experimental group with a current of 0.44 mA, the increase in ΔTMP was only 2.2 kPa. The polysaccharide and protein concentrations in the open-circuit group were 4.2 and 2.9 times higher than those in the closed-circuit group, respectively. Three-dimensional fluorescence spectroscopy and gas chromatography mass spectrometry showed that most of the deposition in the control group contained high-molecular-weight compounds, especially long-chain ester derivatives, phenols, and complex hydrocarbons, whereas the experimental group was the opposite. Therefore, current (electrons) can change the composition of the cake layer. High-throughput sequencing indicated that a significantly higher abundance of electroactive microorganisms on the experimental than control group. Two-dimensional correlation spectroscopy showed that electrons promote the degradation of polysaccharides, thereby alleviating membrane fouling.


Assuntos
Membranas Artificiais , Esgotos , Reatores Biológicos
8.
Plant Physiol ; 190(4): 2430-2448, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36053177

RESUMO

Cucurbitales are an important order of flowering plants known for encompassing edible plants of economic and medicinal value and numerous ornamental plants of horticultural value. By reanalyzing the genomes of two representative families (Cucurbitaceae and Begoniaceae) in Cucurbitales, we found that the previously identified Cucurbitaceae common paleotetraploidization that occurred shortly after the core-eudicot-common hexaploidization event is shared by Cucurbitales, including Begoniaceae. We built a multigenome alignment framework for Cucurbitales by identifying orthologs and paralogs and systematically redating key evolutionary events in Cucurbitales. Notably, characterizing the gene retention levels and genomic fractionation patterns between subgenomes generated from different polyploidizations in Cucurbitales suggested the autopolyploid nature of the Begoniaceae common tetraploidization and the allopolyploid nature of the Cucurbitales common tetraploidization and the Cucurbita-specific tetraploidization. Moreover, we constructed the ancestral Cucurbitales karyotype comprising 17 proto-chromosomes, confirming that the most recent common ancestor of Cucurbitaceae contained 15 proto-chromosomes and rejecting the previous hypothesis for an ancestral Cucurbitaceae karyotype with 12 proto-chromosomes. In addition, we found that the polyploidization and tandem duplication events promoted the expansion of gene families involved in the cucurbitacin biosynthesis pathway; however, gene loss and chromosomal rearrangements likely limited the expansion of these gene families.


Assuntos
Cucurbitaceae , Magnoliopsida , Genoma de Planta/genética , Evolução Molecular , Filogenia , Magnoliopsida/genética , Cucurbitaceae/genética , Poliploidia
9.
ISA Trans ; 130: 325-342, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35489817

RESUMO

A data-driven approach for on-line tuning of minimum variance (MV) PID controller is proposed in this paper for a linear system subject to stochastic disturbances, in which none of a prior knowledge or/and external excitation signals is required. The main procedure is that two different rough tuning controllers are employed and switched from one to another such that two sets of output data are collected under routine operating conditions. Subsequently, based on FCOR (Filtering and CORrelation analysis) algorithm, the corresponding linear MV controller is estimated on-line for the linear system. The parameters of MV-PID controller is tuned to approximate the estimated MV controller by means of solving an optimization problem subject to a constraint of the closed-loop stability, where the weighted penalty function is composed of the inverse of controller parameters and the difference between the proposed controller and the minimum variance controller. By using a different selection of the weighting coefficients in the penalty function, the final tuning parameters of MV-PID controllers are determined by the practical consideration of step disturbance attenuation or sometimes the trade-off between stochastic and step signal disturbance attenuation.

10.
RSC Adv ; 12(11): 6676-6682, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35424625

RESUMO

TiO2 has great potential in photocatalytic degradation of organic pollutants, but poor visible light response and low separation efficiency of photogenerated electron-hole pairs limit its wide applications. In this study, we have successfully prepared TiO2/UiO-67 photocatalyst through an in situ solvothermal method. The degradation rate of aflatoxin B1 (AFB1) is 98.9% in only 80 min, which is superior to the commercial P25, commercial TiO2 and most of reported photocatalysts under visible light irradiation. In addition, the TiO2/UiO-67 photocatalyst showed excellent recyclability. We demonstrated that the enhanced photocatalytic mechanism was owing to the heterojunction between TiO2 and UiO-67, which enhanced effectively the separation photogenerated charge carriers and visible light response. The free radical trapping tests demonstrated that superoxide radicals (˙O2 -), holes (h+) and hydroxyl radicals (˙OH) were the main active species and then oxidized AFB1 to some small molecules.

11.
J Environ Manage ; 311: 114783, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299133

RESUMO

This study constructed sediment microbial fuel cells (SMFCs) for polycyclic aromatic hydrocarbons (PAHs) removal in contaminated aquaculture sediment. Starch, a waste deposited in aquaculture sediment, was employed as the co-substrate for electricity generation and PAHs removal, and the effect of starch-derived organic acids on SMFC performance was assessed. The results indicated that sufficient starch promoted PAHs removal (69.9% for naphthalene, 55.6% for acenaphthene, and 46.8% for pyrene) in dual-chamber SMFC, whereas excessive starch attenuated SMFC performance because the organic acids accumulation reduced anode pH, decreased species diversity, and changed the microbial communities. The electricity generation and PAHs removal were positively correlated (R > 0.96), and both of them were related to Macellibacteroides belonging to Bacteroidetes. However, a larger single-chamber SMFC device did not obtain enhanced PAHs removal owing to the restricted "effective range" of the anode. Hence, more challenges need to be addressed to realize the practical application of SMFC.

12.
RSC Adv ; 10(67): 40619-40624, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-35519198

RESUMO

Semiconductor photocatalysis is widely proposed for decomposing multiple pollutants via photo-generated oxidative species. However, the photocatalytic degradation performance in practical settings still remains unsatisfactory due to the limited production of active oxidative species (AOS). In this work, a defect engineering strategy was developed to explore the superiority of oxygen vacancies (Vo) and their structural regulation to enhance AOS production for boosting photodegradation. Taking anatase TiO2 as a model photocatalyst, ultrathin TiO2 nanosheets containing abundant Vo and appropriate Fe doping exhibited an unprecedented 134 times higher activity in the degradation of Rhodamine B (RhB) (rate as high as 0.3073 min-1) than bulk anatase and were superior to most reported photocatalysts. The defect-rich ultrathin TiO2 nanosheets could be further applied in high-efficiency degradation of tetracycline hydrochloride (TC-HCl) with the degradation rate of 0.0423 min-1. The in situ electron paramagnetic resonance, advanced spectroscopic characterization and electrochemical measurement revealed the key role of Vo and Fe doping in facilitating the production of photo-generated holes and superoxide radicals (˙O2 -) that were identified to be effective to decompose both RhB and TC-HCl. This research provides insight into defect engineering promoting AOS generation and gives inspiration for the design of efficient photocatalysts for photooxidation applications.

13.
RSC Adv ; 10(73): 45067-45075, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516271

RESUMO

The combination of a semiconductor heterojunction and oxygen evolution cocatalyst (OEC) is an important strategy to improve photoelectrochemical (PEC) water oxidation. Herein, a novel hamburger-like nanostructure of a triadic photoanode composed of BiVO4 nanobulks, Co3O4 nanosheets and Ag nanoparticles (NPs), that is, Ag/Co3O4/BiVO4, was designed. In our study, an interlaced 2D ultrathin p-type Co3O4 OEC layer was introduced onto n-type BiVO4 to form a p-n Co3O4/BiVO4 heterojunction with an internal electric field (IEF) in order to facilitate charge transport. Then the modification with Ag NPs can significantly facilitate the separation and transport of photogenerated carriers through the surface plasma resonance (SPR) effect, inhibiting the electron-hole recombination. The resulting Ag/Co3O4/BiVO4 photoanodes exhibit largely enhanced PEC water oxidation performance: the photocurrent density of the ternary photoanode reaches up to 1.84 mA cm-2 at 1.23 V vs. RHE, which is 4.60 times higher than that of the pristine BiVO4 photoanode. The IPCE value is 2.83 times higher than that of the pristine BiVO4 at 400 nm and the onset potential has a significant cathodic shift of 550 mV for the ternary well-constructed photoanode.

14.
Bioresour Technol ; 296: 122375, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31734063

RESUMO

This study aims to assess the roles of different humin and heavy-metal resistant bacterial community from composting on heavy metal removal. The results showed that the concentration of Cu2+, Zn2+, Ni2+, Pb2+, Cr3+ and Cd2+ decreased with adding the compost-derived humin, but the removal rates were relatively low (<30% on average). The heavy metal resistant bacteria from composting have better metal binding capacities than humin, and the combined addition of humin and bacteria could further stimulate the biosorption of heavy metals with 60-80% removal of metals and improve the diversity and biomass of bacterial community. There was obviously increased synergy between the humin from maturity phase and bacteria for metal biosorption ("1 + 1 > 2"). Structural equation modeling showed that microbial biomass and humin humification are the key factors for the biosorption of heavy metals. Combining humin from maturity phase with heavy-metal resistant bacteria was suggested to control heavy metal pollution in composts.


Assuntos
Compostagem , Metais Pesados , Bactérias , Substâncias Húmicas , Papel (figurativo) , Solo
15.
Waste Manag ; 87: 326-334, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109532

RESUMO

The humic-like substances (HLS) are proposed to be formed by biotic and abiotic pathways. The abiotic pathways were neglected in existed composting studies. The present study aims to accelerate the abiotic pathways, and to investigate how MnO2 drives the HLS transformation via changing the contribution of abiotic and biotic pathways during composting with different materials. Parallel factor analysis model (PARAFAC), hetero two-dimensional correlation spectra (hetero-2DCOS) and variance partitioning were used to identify the effects of MnO2 on the formation of humic acid (HA) and fluvic acid (FA) during composting of chicken manure (CM) and corn straw (CS). The addition of MnO2 could change the structures of HLS during CS and CM composting, mainly promoting the formation of complex components in HA and FA during CS composting, as well as the complex components of FA during CM composting. Meanwhile, the addition of MnO2 could reshape the microbial ecology, which enhanced the correlation between microbes and complex components formation during composting, especially in CM composting. Variance partitioning showed that both abiotic and biotic pathways were stimulated in conversion of HLS components after adding MnO2 during CS composting, especially for the abiotic pathways. During CM composting, the MnO2 promoted biotic effects on the conversion of HLS components. Above all, the addition of MnO2 could stimulate pathways of biotic, abiotic or both of them to improve the humification degree of HLS by changing microbial ecology, which could be a promising way for promoting the application value of composting products.


Assuntos
Compostagem , Animais , Substâncias Húmicas , Esterco , Solo , Zea mays
16.
Environ Sci Technol ; 53(7): 3653-3662, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30821974

RESUMO

Humins (HMs) play a very important role in various environmental processes and are crucial for regulating global carbon and nitrogen cycles in various ecosystems. Composting is a controlled decomposition process accompanied by the stabilization of organic solid waste materials. During composting, active fractions of organic substances can be transformed into HMs containing stable and complex macromolecules. However, the structural heterogeneity and formation mechanisms of HMs during composting with various substrates have not been clarified. Here, the structure and composition of HMs extracted from livestock manure (LM) and straw (SW) during composting were investigated by excitation-emission matrices spectroscopy and Fourier transform infrared spectroscopy. The results showed that the stability and humification of LM-HM were lower than that of SW-HM. The parallel factor analysis components of the HM in LM composting contained the same fluorescent unit, and the intermediate of cellulose degradation affected the structure of the HM from SW composting. Structural equation modeling demonstrated that low-molecular-weight compounds were key factors in humification. On the basis of the structure and key factors impacting HM, we constructed two mechanisms for the formation of HM from different composting processes. The LM-HMs from different humification processes have multiple identical fluorescent structural units, and the high humification of SW is affected by its polysaccharide constituents, which contains a fluorescent component in their skeleton, providing a basis for studying HM in composting.


Assuntos
Compostagem , Animais , Ecossistema , Substâncias Húmicas , Esterco , Solo
17.
J Agric Food Chem ; 67(15): 4184-4192, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30908023

RESUMO

Humin (HM) is a complex mixture of molecules produced in the different biological processes, and the structural evolution of HM in the agricultural wastes composting are not well-known. Elucidating and comparing the structural evolution during livestock manure (LMC) and straw wastes (SWC) composting can help one to better understand the fates, features, and environmental impacts of HM. This study exploits excitation emission matrix-parallel factor (EEM-PARAFAC), two-dimensional correlation spectroscopy (2D-CoS), hetero-2DCoS, and structural equation model (SEM) to compare the fate of the HM. We fit a three-component EEM-PARAFAC model to characterize HM extracted from LMC and SWC. The results show that the HM evolution has a significant difference between LMC and SWC. As a result, the opposite change tendency and different change order of HM fluorescent components determine the different synthesis formation and evolution mechanisms. The diverse organic matter composition and dominant microbes might be the reason for the different evolution mechanism. Based on these results, a comprehensive view of the component changes of HM in the composting process is obtained. Furthermore, the superior potential of such an integrated approach during investigating the complex evolution in the environment was also demonstrated.


Assuntos
Compostagem/métodos , Substâncias Húmicas/análise , Animais , Gado , Esterco/análise , Solo/química
18.
Bioresour Technol ; 279: 50-56, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30711752

RESUMO

Development of cold-adapted microbial agent is an efficient approach for composting in low temperature. The study was conducted to evaluate the effect of semi-continuous replacements of compost materials after inoculation (SRMI) on the heat preservation of low temperature composting derived from chicken manure. Results revealed that SRMI could significantly improve the heat preservation of the pile, although the time of start-up in two inoculation groups was approximately the same. Due to the increase in the number of replacements of materials led to the changes in microbial community structures and enzyme activity. Non-metric multidimensional and colorimetric methods indicated that microbial community structures and enzyme activity was completely different in SRMI. Structural equation model was constructed by key factors involved in diversity of the microbial community, enzyme activity, temperature and bio-heat generation. In summary, SRMI decidedly increase the heat preservation time of the pile and start-up efficiency of the low temperature composting.


Assuntos
Compostagem , Animais , Galinhas , Temperatura Baixa , Temperatura Alta , Esterco
19.
Bioresour Technol ; 256: 128-136, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29433047

RESUMO

Composting is an environment friendly method to recycling organic waste. However, with the increasing concern about greenhouse gases generated in global atmosphere, it is significant to reduce the emission of carbon dioxide (CO2). This study analyzes tricarboxylic acid (TCA) cycle regulators on the effect of reducing CO2 emission, and the relationship among organic component (OC) degradation and transformation and microorganism during composting. The results showed that adding adenosine tri-phosphate (ATP) and nicotinamide adenine dinucleotide (NADH) could enhance the transformation of OC and increase the diversity of microorganism community. Malonic acid (MA) as a competitive inhibitor could decrease the emission of CO2 by inhibiting the TCA cycle. A structural equation model was established to explore effects of different OC and microorganism on humic acid (HA) concentration during composting. Furthermore, added MA provided an environmental benefit in reducing the greenhouse gas emission for manufacture sustainable products.


Assuntos
Ciclo do Ácido Cítrico , Compostagem , Efeito Estufa , Carbono , Dióxido de Carbono , Eliminação de Resíduos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...